

Aerodynamic Simulation & Design Laboratory

Prof. Chongam Kim

High-Order Methods for Conservation Laws

t = 4.78

High-order Shock-capturing Schemes

[3-D interaction of shock wave with density bubble]

Subcell Resolution for High-order Methods

Direct Reconstruction Method(DRM) for Discontinuous Galerkin [Turbulent flow over circular cylinder (vortex shedding)]

[Transitional flow over SD7003 airfoil (laminar separation bubble)]

Optimal Grid Resolution for High-order LES

All-Speed Compressible Multiphase Flows

Numerical Methods for All-speed Multiphase Real Fluid Flows: AUSMPW+_N, RoeM_N

[Shock-water column interaction]

[Cryogenic cavitation around hydrofoil]

Applications of All-speed Multi-phase Real Fluid Flows

1. Cryogenic cavitation of turbopump inducer

2. Pressurization in liquid rocket tank 3. High-speed underwater vehicle

High Performance Code Development & Applications

High Performance In-house Code Development

1. Code structure based on Object-Oriented Programming

2. ACTFlow ver. 2.0 - Finite Volume Method (FVM)

Compressible Full Navier-Stokes							
Grid	Cell-centered unstructured mixed-element grid						
	Flux : RoeM, AUSMPW+, Roe, AUSM+-up						
Space Discretization	Limiter : MLP-u1, MLP-u2, Barth, Venkatakrishnan						
Discretization	Low Mach scaling for flux schemes						
Time	Euler explicit, multi-stage RK, BDF2, Implicit RK						
Discretization	Linear algebra : GMRES with preconditioner (DILU, ILU, LUSGS)						
Acceleration	Local time stepping						
Techniques	Low Mach Preconditioning for all-speed flow						
Turbulent Model	SA, k-w SST, Hybrid RANS/LES, etc.						
Boundary Condition	Farfield, inflow, outflow, mass flux, etc.						
Darallalization	MPI with automatic grid decomposition for load balancing						
Farallelization	Parallel data writing process using MPI I/O (HDF5 + CGNS)						

3. Deneb ver. 1.0 - High-order Method (HOM)

In-house Code Performance Assessment

1. NASA Common Reserch Model (CRM)

Fluid-Structure Interaction & Multi-Physics Computations

Design Optimization & Active Flow Control / EDISON_CFD Center

EDISON_CFD to Provide Computational Environments 1. Main page of EDISON_CFD (http://cfd.edison.re.kr) DEDISON_CFD 88834 400位位位生の 把他本・ 2年 ABOUT・ ▲新期7日 ゆうエンジ EDEGONS EDISON Computational Fluid Dynamics

2. Simulation SW and contents in EDISON_CFD

Research Facilities and Alumni

In-house Computing Facilities

Numerical

Approach

simulation

- In-house Computing resource (cluster machine)
- Total 156 nodes / 3492 cores (as of 2021 Sep.)

Cluster	Head Node	Computing Node	Node #	Total Core #	Network System	Note
Liux-based Cluster #1	Intel Xeon E5-2430 V2 (2.5GHz, 12 cores)	Intel Xeon E5-2650 V2 (2.6GHz, 16 cores) + Intel Xeon E5-2650 V3 (2.3GHz, 20 cores) + Intel Xeon E5-2650 V4 (2.2GHz, 24 cores) + Intel Xeon Gold 6230 (2.1GHz, 40 cores)	108	3008	Infiniband Network	Lustre-based Storage Server
Linux-based Cluster #2	Intel Xeon E5620 (2.4GHz, 8 cores)	Intel Xeon E5620 (2.4GHz, 8 cores) + Intel Xeon E5649 (2.53GHz, 12 cores)	48	484	Gigabit Network	Storage Server

Korea Aerospace Industries etc

Rotem, Korea Hydro & Nuclear Power Co. etc

김 종 암 교수 (Chongam Kim, Ph.D.)

Tel: (02)880-1915 Fax : (02)887-2662 E-mail : <u>chongam@snu.ac.kr</u> Homepage : <u>http://mana.snu.ac.kr</u>

서울대학교 항공우주공학과 학사 (1988.2) 서울대학교 항공우주공학과 석사 (1990.2) Princeton University 기계항공공학과 박사 (1997.7) **ASDL** (Aerodynamic Simulation & Design Lab.)

서울대학교 301동 1256호 (Tel: (02) 880-1903) 서울대학교 40동 110호 (Tel : (02) 880-7391) Homepage : <u>http://mana.snu.ac.kr</u>

